MATHS | Practice Paper 1

QUESTION 1 (6 Marks)

1. a. (1 Mark)

Write the equation of line that reflects shape A on to shape B :

1. b (3 Marks)

Translate shape B by vector $\binom{8}{2}$, draw and label the new shape C; next reflect shape C in the line $y=1$ and label the new shape D .

Ensure both shape C and shape D are on your final grid.

D

1. c (2 Marks)

Describe fully the rotation that maps shape D to shape A.
\square

QUESTION 2 (8 Marks)

A manufacturer makes shoes to sell internationally. The manufacturer is contracted to make shoes for Egypt and Brazil.

Interquartile range
$\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$

Independent events
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$

Complementary events
$P(A)+P\left(A^{\prime}\right)=1$

Combined events
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

The box plots show the sizes of shoes sold in Egypt and Brazil. The distributions shown in the box plots are based on the medians and quartiles of the shoe sizes sold.

2a. (2 Marks)

Compare the sizes of shoes in 2 two countries:

2 b. (2 Marks)
Determine the Range of Shoe Size to be Manufactured:

The manufacturer makes shoes in two factories; one in Egypt and one in Brazil. The factory in Egypt makes 60% of the shoes and 10% are defective. The factory in Brazil makes the rest of the shoes and 5% are defective.

This information is illustrated in the tree diagram.

Question 2 c (1 Mark)

Write down the two missing values in the tree diagram.

Question 2 d (3 Marks)

Find the probability that a shoe, chosen at random from either factory, is defective.

MATHS | Practice Paper 1

QUESTION 3 (8 Marks)

3 a (3 Marks)

Given that a straight line L_{1} has the equation $\frac{2 y-1}{2}=x$, show y as the subject, by rearranging the equation for L_{1}.
\square

3 b (5 Marks)

Another straight line L_{2} has the equation $y=\frac{x+5}{2}$.
Find the coordinates of point of intersection between L_{1} and L_{2}.

QUESTION 4 (10 Marks)

The diagram shows a circle with diameter 10 cm . Inside the circle is a square, the vertices of the square touch the circumference of the circle.

4 a. (1 Mark)

Show that the total area enclosed by the
 circle is 25π.

4 b. (3 Marks)

Find the length of one side of the square and write your answer as an exact value.

4c (3 Marks)

Calculate the total area of the green shaded segments that do not include the square. Write your answer to one decimal place.

4 d. (3 Marks)

Find the circumference of the outer circle. \square

QUESTION 5 (10 Marks)

A ball is kicked from $(0,0)$ towards the posts and describes the path of a parabola as shown

Axis of symmetry of graph
of a quadratic function
$f(x)=a x^{2}+b x+c \Rightarrow$ axis of symmetry $x=-\frac{b}{2 a}$

Solutions of a quadratic equation

$a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad, \quad a \neq 0$

Discriminant

$\Delta=b^{2}-4 a c$

MATHS | Practice Paper 1

5 b (3 Marks)

Show that the :
The height in metres (m) of the ball above the ground is given by the function $h(x)=\frac{x(30-x)}{25}$.
To score points the ball is kicked from the point $(0,0)$ and must go over a bar on the posts that is

3 m above the ground and 26 m away from the point the ball was kicked. This is illustrated in the diagram in Tab 2 above.
Remember the function for the height of the ball is $h(x)=\frac{x(30-x)}{25}$.

5 b (3 Marks)

Using the equation given, Show that the team scored points .

Later in the game another kick is taken from the point $(x, 0)$ towards the posts.
This time the height of the ball above ground is represented by the function
$g(x)=\frac{-x^{2}+30 x-125}{25}$.
Note that the posts cannot be moved.

5 c (3 Marks)
Solve $\mathrm{g}(\mathrm{x})=0$

MATHS | Practice Paper 1

5 d (2 marks)

Did the team score points?
\square

QUESTION 6 (21 Marks)

Music is a widely accepted form of artistic expression and creativity. In this question you will be presented with the instrument design of a piano.

MATHS | Practice Paper 1

Here is a table with some information on the first four octaves and frequencies of the note A on the piano.

Octave (n)	0	1	2	3
Note (A)	A_{0}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$
Frequency (F) Hertz (Hz)	27.5	55	110	220

6 a (1 Mark)

Write down, what happens to the frequency " f " as otaves increase.

6 b (1 Mark)

Write down the frequencies for A_{4} and A_{5}.
A_{4}
A_{5}

6 c (2 Marks)

Deduce that all the A notes on the piano are within human hearing.

6d(3 Marks)

The frequency F_{3} can be written as $F_{0} \times 2^{k}$. Calculate the value of k, where k is an integer.
\square

6d(2Marks)

Find a formula for F in terms of " n "
\square

6 f(2Marks)

A Note has frequency of 28160 Hz . Is it a Note? Justify Your answer .

6 g (10 Marks)

Keys Hearing range

QUESTION 7 (18 Marks)

Ancient civilizations built pyramids to express cultural identity. In this question you will make calculations for a model of Chichén Iztá pyramid.

Chichén Iztá pyramid is composed of nine platforms. The width of the first platform is 55.3 m and on the ninth platform there is a temple that is 6 m high.
All lengths provided are given to the nearest centimetre (cm) and angles are to the nearest whole degree.
You are planning to construct a scale model of the Chichén Iztá Pyramid and will use 1:100 as scale for your model. In this question you will work out values of lengths. The validity of the accuracy of your model will be required in part (e).

MATHS | Practice Paper 1

7 a (2 Marks)

determine the total height of your model pyramid including the nine platforms and the temple. Write your answer in cm .

Total height $=$
cm

7 b (3 Marks)

Using the diagram in Tab 1, find the height h of each platform in your model. Write your answer in cm correct to one decimal place.

Model height $h=$
cm

$7 \mathrm{c}(4$ Marks)

The average inclination of the slant is 53° to the nearest degree.

Using the diagram in Tab 2, find the depth d of each pyramid step. Write your answer in cm correct to the nearest whole number.

Model $d=$ \square cm

7 d (3 Marks)

Using the diagram in Tab 1, find the width W_{9} in cm of the top platform in your model.

Model width $W_{9}=$ \square cm
\square

7 e(6 Marks)

Discuss the validity of your model for Chichén Iztá pyramid. In your discussion you should:

- identify relevant information required to discuss the validity
- consider the implications of the chosen degree of accuracy
- comment on the validity of the model to Chichén Iztá.

QUESTION 8 (20 Marks)

A recursive sequence is one where the next term is a specific combination of the previous terms.

In this question the recursive sequence is created where the next term is the mean of the previous two terms. This is called a mean sequence.

> The mean sequence terms approach the value 7
> The mean sequence has a limit L, of 7

$9,6,7.5,6.75,7.125,6.938,7.031,6.984,7.008,6.996$,

8 a (2 marks)

Here is a mean sequence with starting terms 6 and 9.
$6,9,7.5,8.25, \ldots$
Show that the next term in the sequence is 7.875 and write down the limit of the sequence.
\square

All mean sequences have limits and there is a connection between the first two terms a and b and the limit L of each sequence.

8 b (2 Marks)
The table below shows the first two terms and the limit L, for some mean sequences. The different starting terms a are provided and b is fixed at 3 .

Write down in the table the limit values L, for row 2, 3 and 4 for the mean sequences provided.

Row	First term (a)	Second term (b)	Limit (L)
1	6	3	4
2	9	3	
3	12	3	
4	15	3	

8 c (2 Marks)
Describe in words two patterns you have found from the table.

8 d (2 Marks)

Describe the general rule connecting "a" \& "L"
\square

8 e (12 Marks)

Using your previous results, investigate and find a general rule connecting a, b and L. The simulator and a blank table are provided below to support your investigation. In your answer you should:

- describe patterns
- find a general rule
- test your general rule
- use correct mathematical notation
- prove or verify and justify your general rule.

MATHS | Practice Paper 1

QUESTION 9(19 Marks)

We can also use an algebraic approach to investigate mean sequences.
If a and b are the first two terms, the mean sequence will start with the terms below.
$a, b, \frac{1}{2} a+\frac{1}{2} b, \ldots$

9a. (1 Mark)

Explain why the third term is $\frac{1}{2} a+\frac{1}{2} b$.

9b. (4 Marks)

Predict the seventh and eighth terms from the table and write your answers in the relevant response box.

Term (T)	Sequence
1	a
2	b
3	$\frac{1}{2} a+\frac{1}{2} b$
4	$\frac{1}{4} a+\frac{3}{4} b$
5	$\frac{3}{8} a+\frac{5}{8} b$
6	$\frac{5}{16} a+\frac{11}{16} b$
7	$\square a+\square b$
8	$-a+-b$

Term 7:

Term 8:

