Section A Part 1 (No Calculator)

- **1** Consider the quadratic function y = -2(x+2)(x-1).
 - **a** State the x-intercepts.
- **b** State the equation of the axis of symmetry.
- Find the *y*-intercept.
- **d** Find the coordinates of the vertex.
- Sketch the function.
- **2** Solve the following equations, giving exact answers:
 - **a** $3x^2 12x = 0$
- **b** $3x^2 x 10 = 0$ **c** $x^2 11x = 60$

- **3** Solve using the quadratic formula:
 - **a** $x^2 + 5x + 3 = 0$

- **b** $3x^2 + 11x 2 = 0$
- **4** Solve by 'completing the square': $x^2 + 7x 4 = 0$
- **5** Use the vertex, axis of symmetry, and *y*-intercept to graph:
 - a $y = (x-2)^2 4$

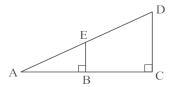
- **b** $y = -\frac{1}{2}(x+4)^2 + 6$
- **6** Find, in the form $y = ax^2 + bx + c$, the equation of the quadratic whose graph:
 - **a** touches the x-axis at 4 and passes through (2, 12)
 - **b** has vertex (-4, 1) and passes through (1, 11).
- **7** Find the maximum or minimum value of the relation $y = -2x^2 + 4x + 3$ and the value of x at which this occurs.
- **8** The roots of $2x^2 3x = 4$ are α and β . Find the simplest quadratic equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- **9** Solve the following equations:
 - **a** $x^2 + 10 = 7x$
- **b** $x + \frac{12}{x} = 7$ **c** $2x^2 7x + 3 = 0$
- **10** Find the points of intersection of $y = x^2 3x$ and $y = 3x^2 5x 24$.
- **11** For what values of k does the graph of $y = -2x^2 + 5x + k$ not cut the x-axis?
- **12** Find the values of m for which $2x^2 3x + m = 0$ has:
 - **a** a repeated root
- **b** two distinct real roots
- **c** no real roots.
- The sum of a number and its reciprocal is $2\frac{1}{30}$. Find the number.
- 14 Show that no line with a y-intercept of (0, 10) will ever be tangential to the curve with equation $y = 3x^2 + 7x - 2.$
- **15** One of the roots of $kx^2 + (1-3k)x + (k-6) = 0$ is the negative reciprocal of the other root. Find k and the two roots.

Section A Part 2 (Calculator)

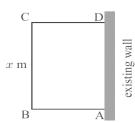
- 1 Consider the quadratic function $y = 2x^2 + 6x 3$.
 - **a** Convert it to the form $y = a(x h)^2 + k$.
 - **b** State the coordinates of the vertex.
 - Find the y-intercept.
 - **d** Sketch the graph of the function.

- 2 Solve:
 - **a** (x-2)(x+1) = 3x-4
- **b** $2x \frac{1}{x} = 5$
- 3 Draw the graph of $y = -x^2 + 2x$.
- **4** Consider the quadratic function $y = -3x^2 + 8x + 7$. Find the equation of the axis of symmetry, and the coordinates of the vertex.
- **5** Using the discriminant only, determine the nature of the solutions of:
 - a $2x^2 5x 7 = 0$

- **b** $3x^2 24x + 48 = 0$
- **6** a For what values of c do the lines with equations y = 3x + c intersect the parabola $y = x^2 + x 5$ in two distinct points?
 - **b** Choose one such value of c from part **a** and find the points of intersection in this case.
- **7** Suppose [AB] has the same length as [CD], [BC] is 2 cm shorter than [AB], and [BE] is 7 cm in length. Find the length of [AB].



- **8** 60 m of chicken wire is available to construct a rectangular chicken enclosure against an existing wall.
 - **a** If BC = x m, show that the area of rectangle ABCD is given by $A = (30x \frac{1}{2}x^2)$ m².
 - **b** Find the dimensions of the enclosure which will maximise the area enclosed.



- **9** Consider the quadratic function $y = 2x^2 + 4x 1$.
 - **a** State the axis of symmetry.
- **b** Find the coordinates of the vertex.

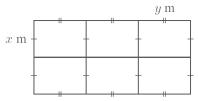
• Find the axes intercepts.

- **d** Hence sketch the function.
- 10 An open square-based container is made by cutting 4 cm square pieces out of a piece of tinplate. If the volume of the container is 120 cm³, find the size of the original piece of tinplate.
- **11** Consider $y = -x^2 5x + 3$ and $y = x^2 + 3x + 11$.
 - **a** Solve for x: $-x^2 5x + 3 = x^2 + 3x + 11$.
 - **b** Hence, or otherwise, determine the values of x for which $x^2 + 3x + 11 > -x^2 5x + 3$.
- 12 Find the maximum or minimum value of the following quadratics, and the corresponding value of x:

a
$$y = 3x^2 + 4x + 7$$

b
$$y = -2x^2 - 5x + 2$$

- **13** 600 m of fencing is used to construct 6 rectangular animal pens as shown.
 - **a** Show that the area A of each pen is $A = x \left(\frac{600 8x}{9} \right) \text{ m}^2.$



- **b** Find the dimensions of each pen so that it has the maximum possible area.
- **c** What is the area of each pen in this case?
- **14** Two different quadratic functions of the form $y = 9x^2 kx + 4$ each touch the x-axis.
 - **a** Find the two values of k.
 - **b** Find the point of intersection of the two quadratic functions.

Section A Part 3 (Calculator)

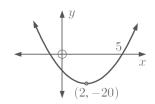
3 Solve the following using the quadratic formula:

a
$$x^2 - 7x + 3 = 0$$

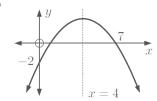
b
$$2x^2 - 5x + 4 = 0$$

4 Find the equation of the quadratic function with graph:

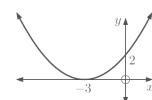
a



b



C



5 Use the discriminant only to find the relationship between the graph and the x-axis for:

a
$$y = 2x^2 + 3x - 7$$

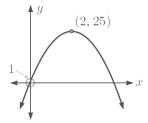
b
$$y = -3x^2 - 7x + 4$$

6 Determine whether the following quadratic functions are positive definite, negative definite, or neither:

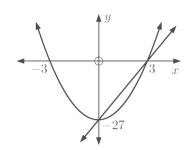
a
$$y = -2x^2 + 3x + 2$$

b
$$y = 3x^2 + x + 11$$

7 Find the equation of the quadratic function shown:



- **8** Find the y-intercept of the line with gradient -3 that is tangential to the parabola $y = 2x^2 5x + 1$.
- **9** For what values of k would the graph of $y = x^2 2x + k$ cut the x-axis twice?
- 10 Find the quadratic function which cuts the x-axis at 3 and -2 and which has y-intercept 24. Give your answer in the form $y = ax^2 + bx + c$.
- **11** For what values of m are the lines y = mx 10 tangents to the parabola $y = 3x^2 + 7x + 2$?
- **12** $ax^2 + (3-a)x 4 = 0$ has roots which are real and positive. What values can a have?
- **13** a Determine the equation of:
 - i the quadratic function
 - ii the straight line.
 - **b** For what values of x is the straight line above the curve?



- Show that the lines with equations y = -5x + k are tangents to the parabola $y = x^2 3x + c$ if and only if c k = 1.
- **15** $4x^2 3x 3 = 0$ has roots p, q. Find *all* quadratic equations with roots p^3 and q^3 .

Section B, Part 1 (No Calculator)

1 If $f(x) = x^2 - 2x$, find in simplest form:

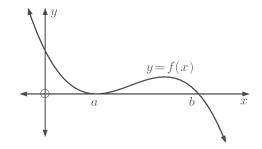
- **b** f(2x)
- f(-x)
- **d** 3f(x) 2

2 If $f(x) = 5 - x - x^2$, find in simplest form:

- a f(-1)
- **b** f(x-1)
- c $f\left(\frac{x}{2}\right)$
- **d** 2f(x) f(-x)

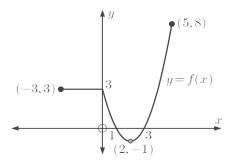
3 The graph of $f(x) = 3x^3 - 2x^2 + x + 2$ is translated to its image g(x) by the vector $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Write the equation of g(x) in the form $g(x) = ax^3 + bx^2 + cx + d$.

4 The graph of y = f(x) is shown alongside. The x-axis is a tangent to f(x) at x = a and f(x)cuts the x-axis at x = b. On the same diagram, sketch the graph of y = f(x - c) where 0 < c < b - a. Indicate the x-intercepts of y = f(x - c).



5 For the graph of y = f(x) given, sketch graphs of:

- **a** y = f(-x) **b** y = -f(x) **c** y = f(x+2) **d** y = f(x) + 2

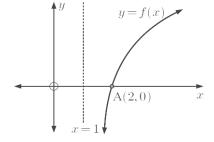


6 Consider the function $f: x \mapsto x^2$. On the same set of axes graph:

- **a** y = f(x) **b** y = f(x-1)
- y = 3f(x-1)

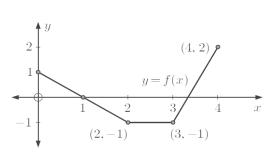
7 The graph of y = f(x) is shown alongside.

- **a** Sketch the graph of y = g(x) where g(x) = f(x+3) - 1.
- **b** State the equation of the vertical asymptote of
- Identify the point A' on the graph of y = g(x)which corresponds to point A.

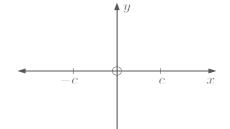


8 The graph of y = f(x) is drawn alongside.

- **a** Draw the graphs of y = f(x) and y = |f(x)| on the same set of axes.
- **b** Find the y-intercept of $\frac{1}{f(x)}$.
- Show on the diagram the points that are invariant for the function $\frac{1}{f(x)}$.
- **d** Draw the graphs of y = f(x) and $y = \frac{1}{f(x)}$ on the same set of axes.



- **9** Let $f(x) = \frac{c}{x+c}, \ x \neq -c, \ c > 0.$
 - a On a set of axes like those shown, sketch the graph of y = f(x). Label clearly any points of intersection with the axes and any asymptotes.



- **b** On the same set of axes, sketch the graph of $y = \frac{1}{f(x)}$. Label clearly any points of intersection with the axes.
- **10** Consider f(x) = x a where a is a positive real number.
 - **a** Find expressions for |f(x)| and f(|x|).
 - **b** Sketch y = |f(x)| and y = f(|x|) on the same set of axes.
 - Solve for x given a is a positive real number: |x-a| = |x| a.

Section B, Part 2 (Calculator)

- 1 Use your calculator to help graph $f(x) = (x+1)^2 4$. Include all axes intercepts, and the coordinates of the turning point of the function.
- **2** Consider the function $f: x \mapsto x^2$. On the same set of axes graph:

a
$$y = f(x)$$

b
$$y = f(x+2)$$

$$y = 2f(x+2)$$

a
$$y = f(x)$$
 b $y = f(x+2)$ **c** $y = 2f(x+2)$ **d** $y = 2f(x+2) - 3$

- **3** Consider $f: x \mapsto \frac{2^x}{x}$.
 - **a** Does the function have any axes intercepts?
 - **b** Find the equations of the asymptotes of the function.
 - Find any turning points of the function.
 - **d** Sketch the function for $-4 \le x \le 4$.
- **4** Consider $f(x) = 2^{-x}$.
 - a Use your calculator to help determine whether the following are true or false:

i As
$$x \to \infty$$
, $2^{-x} \to 0$.

ii As
$$x \to -\infty$$
, $2^{-x} \to 0$.

iii The y-intercept is
$$\frac{1}{2}$$
.

iv
$$2^{-x} > 0$$
 for all x .

- **b** On the same set of axes, graph y = f(x) and y = |f(x)|.
- Write down the equation of any asymptoes of y = |f(x)|.
- **5** The graph of the function $f(x) = (x+1)^2 + 4$ is translated 2 units to the right and 4 units
 - **a** Find the function g(x) corresponding to the translated graph.
 - **b** State the range of f(x).
 - $oldsymbol{c}$ State the range of q(x).
- **6** For each of the following functions:
 - i Find y = f(x), the result when the function is translated by $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.
 - ii Sketch the original function and its translated function on the same set of axes. Clearly state any asymptotes of each function.
 - iii State the domain and range of each function.

$$\mathbf{a} \quad y = \frac{1}{x}$$

b
$$y = 2^x$$

7 Sketch the graph of $f(x) = x^2 + 1$, and on the same set of axes sketch the graphs of:

$$-f(x)$$

b
$$f(2x)$$

c
$$f(x) + 3$$

8 Suppose f(x) = x + 2. The function F is obtained by stretching the function f vertically with scale factor 2, then stretching it horizontally with scale factor $\frac{1}{2}$, then translating it $\frac{1}{2}$ horizontally and -3 vertically.

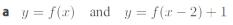
a Find the function F(x).

b What can be said about the point (1, 3) under this transformation?

• What happens to the points (0, 2) and (-1, 1) under this transformation?

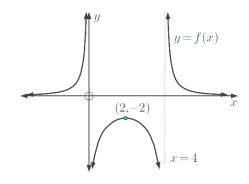
d Show that the points in **c** also lie on the graph of y = F(x).

9 The graph of y = f(x) is given. On the same set of axes graph each pair of functions:



b
$$y = f(x)$$
 and $y = \frac{1}{f(x)}$

$$y = f(x)$$
 and $y = |f(x)|$



10 Consider the function $f(x) = \frac{2x-3}{3x+5}$.

a Find the asymptotes of y = f(x).

b Discuss the behaviour of the graph near these asymptotes.

 \bullet Find the axes intercepts of y = f(x).

d Sketch the graph of y = f(x).

• Describe the transformations which transform $y = \frac{1}{x}$ into y = f(x).

f Describe the transformations which transform y = f(x) into $y = \frac{1}{x}$.

a Sketch the graph of f(x) = -2x + 3, clearly showing the axes intercepts. 11

b Find the invariant points for the graph of $y = \frac{1}{f(x)}$.

• State the equation of the vertical asymptote of $y = \frac{1}{f(x)}$ and find its y-intercept.

d Sketch the graph of $y = \frac{1}{f(x)}$ on the same axes as in part **a**, showing clearly the information you have found.

• On a new pair of axes, sketch the graphs of y = |f(x)| and y = f(|x|) showing clearly all important features.

Section B, Part 3 (Calculator)

1 If $f(x)=\frac{4}{x}$, find in simplest form: **a** f(-4) **b** f(2x) **c** $f\left(\frac{x}{2}\right)$ **d** 4f(x+2)-3

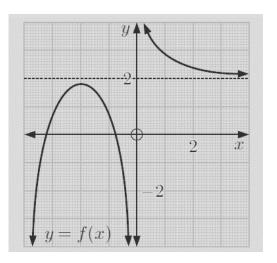
a
$$f(-4)$$

b
$$f(2x)$$

c
$$f\left(\frac{x}{2}\right)$$

d
$$4f(x+2) - 3$$

- **2** Consider the graph of y = f(x) shown.
 - **a** Use the graph to determine:
 - i the coordinates of the turning point
 - ii the equation of the vertical asymptote
 - iii the equation of the horizontal asymptote
 - iv the x-intercepts.
 - **b** Graph the function $g: x \mapsto x+1$ on the same set of axes.
 - Hence estimate the coordinates of the points of intersection of y = f(x) and y = g(x).



3 Sketch the graph of $f(x) = -x^2$, and on the same set of axes sketch the graph of:

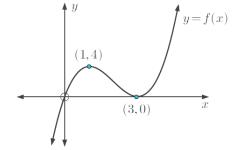
$$\mathbf{a} \quad y = f(-x)$$

a
$$y = f(-x)$$
 b $y = -f(x)$ **c** $y = f(2x)$

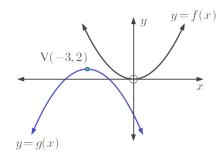
$$y = f(2x)$$

d
$$y = f(x-2)$$

- **4** The graph of a cubic function y = f(x) is shown alongside.
 - **a** Sketch the graph of g(x) = -f(x-1).
 - **b** State the coordinates of the turning points of y = g(x).



5 The graph of $f(x) = x^2$ is transformed to the graph of g(x) by a reflection and a translation as illustrated. Find the formula for q(x) in the form $g(x) = ax^2 + bx + c.$

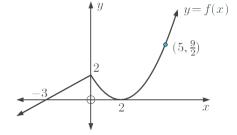


6 Given the graph of y = f(x), sketch graphs of:

a
$$f(-x)$$

b
$$f(x+1)$$

$$f(x) - 3$$



7 The graph of $f(x) = x^3 + 3x^2 - x + 4$ is translated to its image y = g(x) by the vector $\binom{-1}{3}$. Write the equation of g(x) in the form $g(x) = ax^3 + bx^2 + cx + d$.

- **8** a Find the equation of the line that results when the line f(x) = 3x + 2 is translated:
 - i 2 units to the left

- ii 6 units upwards.
- **b** Show that when the linear function f(x) = ax + b, a > 0 is translated k units to the left, the resulting line is the same as when f(x) is translated ka units upwards.
- **9** The function f(x) results from transforming the function $y = \frac{1}{x}$ by a reflection in the y-axis, then a vertical stretch with scale factor 3, then a translation of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
 - **a** Find an expression for f(x).
 - **b** Sketch y = f(x) and state its domain and range.
 - Does y = f(x) have an inverse function? Explain your answer.
 - **d** Is the function f a self-inverse function? Give graphical and algebraic evidence to support your answer.
- **10** Consider $y = \log_4 x$.
 - **a** Find the function which results from a translation of $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.
 - **b** Sketch the original function and the translated function on the same set of axes.
 - **c** State the asymptotes of each function.
 - **d** State the domain and range of each function.
- 11 The function g(x) results when $y = \frac{1}{x}$ is transformed by a vertical stretch with scale factor $\frac{1}{3}$, followed by a reflection in the y-axis, followed by a translation of 2 units to the right.
 - **a** Write an expression for g(x) in the form $g(x) = \frac{ax+b}{cx+d}$
 - **b** Find the asymptotes of y = g(x).
 - State the domain and range of g(x).
 - **d** Sketch y = g(x).

Section C, Part 1 (No Calculator)

1 Simplify:

a
$$-(-1)^{10}$$

b
$$-(-3)^3$$

$$3^0 - 3^{-1}$$

2 Simplify using the laws of exponents:

a
$$a^4b^5 \times a^2b^2$$

b
$$6xy^5 \div 9x^2y^5$$
 c $\frac{5(x^2y)^2}{(5x^2)^2}$

$$\frac{5(x^2y)^2}{(5x^2)^2}$$

3 Let $f(x) = 3^x$.

a Write down the value of: **i** f(4) **ii** f(-1)

b Find the value of k such that $f(x+2) = k f(x), k \in \mathbb{Z}$.

4 Write without brackets or negative exponents:

a
$$x^{-2} \times x^{-3}$$

b
$$2(ab)^{-2}$$

$$c$$
 $2ab^{-2}$

5 Write as a single power of 3:

a
$$\frac{27}{9^a}$$

b
$$(\sqrt{3})^{1-x} \times 9^{1-2x}$$

6 Evaluate:

a
$$8^{\frac{2}{3}}$$

7 Write without negative exponents:

a
$$mn^{-2}$$

b
$$(mn)^{-3}$$

$$\frac{m^2n^{-1}}{n^{-2}}$$

b
$$(mn)^{-3}$$
 c $\frac{m^2n^{-1}}{n^{-2}}$ **d** $(4m^{-1}n)^2$

8 Expand and simplify:

a
$$(3 - e^x)^2$$

b
$$(\sqrt{x}+2)(\sqrt{x}-2)$$
 c $2^{-x}(2^{2x}+2^x)$

$$2^{-x}(2^{2x}+2^x)$$

9 Find the value of x:

a
$$2^{x-3} = \frac{1}{32}$$

b
$$9^x = 27^{2-2x}$$

b
$$9^x = 27^{2-2x}$$
 c $e^{2x} = \frac{1}{\sqrt{e}}$

10 Match each equation to its corresponding graph:

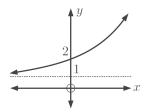
$$y = -e^x$$

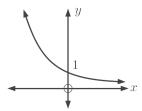
b
$$y = 3 \times 2^x$$
 c $y = e^x + 1$ **d** $y = 3^{-x}$ **e** $y = -e^{-x}$

$$u = e^x + 1$$

$$u = 3^{-x}$$

$$u = -e^{-x}$$

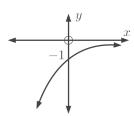




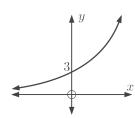
C



D



E



11 Suppose $y = a^x$. Express in terms of y:

$$a$$
 a^{2x}

$$b$$
 a^{-x}

c
$$\frac{1}{\sqrt{a^3}}$$

Section C, Part 2 (No Calculator)

a Write 4×2^n as a power of 2.

b Evaluate $7^{-1} - 7^0$.

• Write $(\frac{2}{3})^{-3}$ in simplest fractional form.

d Write $\left(\frac{2a^{-1}}{b^2}\right)^2$ without negative exponents or brackets.

2 Evaluate, correct to 3 significant figures:

a $3^{\frac{3}{4}}$

b $27^{-\frac{1}{5}}$

 $\checkmark \sqrt{100}$

3 If $f(x) = 3 \times 2^x$, find the value of:

a f(0)

b f(3)

c f(-2)

4 Suppose $f(x) = 2^{-x} + 1$.

a Find $f(\frac{1}{2})$.

b Find a such that f(a) = 3.

5 On the same set of axes draw the graphs of $y=2^x$ and $y=2^x-4$. Include on your graph the y-intercept and the equation of the horizontal asymptote of each function.

6 The temperature of a dish t minutes after it is removed from the microwave, is given by $T = 80 \times (0.913)^t \, ^{\circ}\text{C}.$

a Find the initial temperature of the dish.

b Find the temperature after:

t = 12

t = 24

iii t = 36 minutes.

• Draw the graph of T against t for $t \ge 0$, using the above or technology.

d Hence, find the time taken for the temperature of the dish to fall to 25°C.

7 Consider $y = 3^x - 5$.

a Find y when $x = 0, \pm 1, \pm 2$.

b Discuss y as $x \to \pm \infty$.

• Sketch the graph of $y = 3^x - 5$.

d State the equation of any asymptote.

a On the same set of axes, sketch and clearly label the graphs of:

$$f: x \mapsto e^x$$
, $g: x \mapsto e^{x-1}$, $h: x \mapsto 3 - e^x$

b State the domain and range of each function in **a**.

9 Consider $y = 3 - 2^{-x}$.

a Find y when $x = 0, \pm 1, \pm 2$.

b Discuss y as $x \to \pm \infty$.

• Sketch the graph of $y = 3 - 2^{-x}$. d State the equation of any asymptote.

10 The weight of a radioactive substance after t years is given by $W = 1500 \times (0.993)^t$ grams.

a Find the original amount of radioactive material.

b Find the amount of radioactive material remaining after:

i 400 years

ii 800 years.

 \bullet Sketch the graph of W against t, $t \ge 0$, using the above or technology.

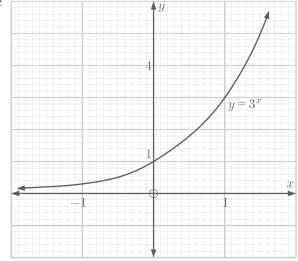
d Hence, find the time taken for the weight to reduce to 100 grams.

Section C, Part 3 (No Calculator)

1 Given the graph of $y = 3^x$ shown, estimate solutions to the exponential equations:

b
$$3^x = \frac{1}{2}$$

$$6 \times 3^x = 20$$



2 Simplify using the laws of exponents:

a
$$(a^7)^3$$

b
$$pq^2 \times p^3q^4$$

$$\frac{8ab^5}{2a^4b^4}$$

3 Write the following as a power of 2:

a
$$2 \times 2^{-4}$$

b
$$16 \div 2^{-3}$$

4 Write without brackets or negative exponents:

a
$$b^{-3}$$

b
$$(ab)^{-1}$$

$$ab^{-1}$$

5 Simplify
$$\frac{2^{x+1}}{2^{1-x}}$$
.

6 Write as powers of 5 in simplest form:

b
$$5\sqrt{5}$$

$$\frac{1}{\sqrt[4]{5}}$$

d
$$25^{a+3}$$

7 Expand and simplify:

a
$$e^{x}(e^{-x} + e^{x})$$

b
$$(2^x + 5)^2$$

a
$$e^x(e^{-x}+e^x)$$
 b $(2^x+5)^2$ **c** $(x^{\frac{1}{2}}-7)(x^{\frac{1}{2}}+7)$

8 Solve for x:

a
$$6 \times 2^x = 192$$

a
$$6 \times 2^x = 192$$
 b $4 \times (\frac{1}{3})^x = 324$

- **9** The point $(1, \sqrt{8})$ lies on the graph of $y = 2^{kx}$. Find the value of k.
- **10** Solve for x without using a calculator:

a
$$2^{x+1} = 32$$

b
$$4^{x+1} = \left(\frac{1}{8}\right)^x$$

- **11** Consider $y = 2e^{-x} + 1$.
 - **a** Find y when $x = 0, \pm 1, \pm 2$.
 - **b** Discuss y as $x \to \pm \infty$.
 - Sketch the graph of $y = 2e^{-x} + 1$.
 - **d** State the equation of any asymptote.

Section D, Part 1 (No Calculator)

1 Find the following, showing all working.

a
$$\log_4 64$$

b
$$\log_2 256$$

$$\log_2(0.25)$$

d
$$\log_{25} 5$$

$$e \log_8 1$$

$$g \log_{\alpha}(0.\overline{1})$$

g
$$\log_9(0.\overline{1})$$
 h $\log_k \sqrt{k}$

2 Find:

a
$$\log \sqrt{10}$$

b
$$\log \frac{1}{\sqrt[3]{10}}$$

$$\log(10^a \times 10^{b+1})$$

3 Simplify:

a
$$4 \ln 2 + 2 \ln 3$$

a
$$4 \ln 2 + 2 \ln 3$$
 b $\frac{1}{2} \ln 9 - \ln 2$ **c** $2 \ln 5 - 1$ **d** $\frac{1}{4} \ln 81$

c
$$2 \ln 5 - 1$$

d
$$\frac{1}{4} \ln 81$$

4 Find:

a
$$\ln(e\sqrt{e})$$

b
$$\ln\left(\frac{1}{e^3}\right)$$

$$\ln(e^{2x})$$

b
$$\ln\left(\frac{1}{e^3}\right)$$
 c $\ln(e^{2x})$ **d** $\ln\left(\frac{e}{e^x}\right)$

5 Write as a single logarithm:

a
$$\log 16 + 2 \log 3$$

b
$$\log_2 16 - 2\log_2 3$$
 c $2 + \log_4 5$

$$c$$
 2 + $\log_4 5$

6 Write as logarithmic equations:

$$P = 3 \times b^x$$

b
$$m = \frac{n^3}{n^2}$$

7 Show that $\log_3 7 \times 2 \log_7 x = 2 \log_3 x$.

8 Write the following equations without logarithms:

$$a \quad \log T = 2\log x - \log y$$

b
$$\log_2 K = \log_2 n + \frac{1}{2} \log_2 t$$

9 Write in the form $a \ln k$ where a and k are positive whole numbers and k is prime:

- a $\ln 32$
- **b** $\ln 125$
- $\ln 729$

10 Copy and complete:

Function	$y = \log_2 x$	$y = \ln(x+5)$
Domain		
Range		

11 If $A = \log_5 2$ and $B = \log_5 3$, write in terms of A and B:

- a $\log_5 36$ b $\log_5 54$ c $\log_5(8\sqrt{3})$ d $\log_5(20.25)$ e $\log_5(0.\overline{8})$

12 Solve for x:

a
$$3e^x - 5 = -2e^{-x}$$

b
$$2\ln x - 3\ln\left(\frac{1}{x}\right) = 10$$

Section D, Part 2 (Calculator)

1 Write in the form 10^x giving x correct to 4 decimal places:

a 32

b 0.0013

 8.963×10^{-5}

2 Find x if:

- a $\log_2 x = -3$
- **b** $\log_5 x \approx 2.743$ **c** $\log_3 x \approx -3.145$

- **3** Write the following equations without logarithms:
 - a $\log_2 k \approx 1.699 + x$
- **b** $\log_a Q = 3\log_a P + \log_a R$
- $\log A \approx 5 \log B 2.602$
- 4 Solve for x, giving exact answers:
 - **a** $5^x = 7$

- **b** $20 \times 2^{2x+1} = 640$
- **5** The weight of a radioactive isotope after t years is given by $W_t = 2500 \times 3^{-\frac{t}{3000}}$ grams.
 - **a** Find the initial weight of the isotope.
 - **b** Find the time taken for the isotope to reduce to 30% of its original weight.
 - Find the percentage weight loss after 1500 years.
 - **d** Sketch the graph of W_t against t.
- **6** Show that the solution to $16^x 5 \times 8^x = 0$ is $x = \log_2 5$.
- **7** Solve for x, giving exact answers:
 - a $\ln x = 5$

- **b** $3 \ln x + 2 = 0$
- $e^x = 400$

- **d** $e^{2x+1} = 11$
- $25e^{\frac{x}{2}} = 750$
- **8** A population of seals is given by $P_t = P_0 2^{\frac{t}{3}}$ where t is the time in years, $t \ge 0$.
 - **a** Find the time required for the population to double in size.
 - **b** Find the percentage increase in population during the first 4 years.
- **9** Consider $g: x \mapsto 2e^x 5$.
 - **a** Find the defining equation of q^{-1} .
 - **b** Sketch the graphs of g and g^{-1} on the same set of axes.
 - State the domain and range of g and g^{-1} .
 - **d** State the asymptotes and intercepts of g and g^{-1} .
- **10** Consider $f(x) = e^x$ and $g(x) = \ln(x+4)$, x > -4. Find:
 - $\mathbf{a} \quad (f \circ g)(5)$
- **b** $(g \circ f)(0)$
- **11 a** Sketch the graph of $f(x) = x^3 + x^2 6x e^x$.
 - **b** Hence find all $x \in \mathbb{R}$ for which $e^x < x^3 + x^2 6x$.

Section D, Part 3

- 1 Without using a calculator, find the base 10 logarithms of:
 - a $\sqrt{1000}$

b $\frac{10}{\sqrt[3]{10}}$

 $\frac{10^a}{10^{-b}}$

- **2** Simplify:
 - a $e^{4 \ln x}$

b $\ln(e^5)$

 $\ln(\sqrt{e})$

- **d** $10^{\log x + \log 3}$
- $e \ln\left(\frac{1}{e^x}\right)$

 $\mathbf{f} \quad \frac{\log x^2}{\log_3 9}$

3 Write in the form e^x , where x is correct to 4 decimal places:

 \mathbf{a} 20

b 3000

c = 0.075

4 Solve for *x*:

a $\log x = 3$

b $\log_3(x+2) = 1.732$ **c** $\log_2\left(\frac{x}{10}\right) = -0.671$

5 Write as a single logarithm:

a $\ln 60 - \ln 20$

b $\ln 4 + \ln 1$

 $\ln 200 - \ln 8 + \ln 5$

6 Write as logarithmic equations:

a $M = ab^n$

b $T = \frac{5}{\sqrt{I}}$

 $G = \frac{a^2b}{c}$

7 Solve for x:

a $3^x = 300$

b $30 \times 5^{1-x} = 0.15$ **c** $3^{x+2} = 2^{1-x}$

8 Solve exactly for x:

 $e^{2x} = 3e^x$

b $e^{2x} - 7e^x + 12 = 0$

9 Write the following equations without logarithms:

a $\ln P = 1.5 \ln Q + \ln T$

b $\ln M = 1.2 - 0.5 \ln N$

10 Consider the functions $f(x) = e^{x^2} - x^6$ and $g(x) = \ln(x^2 + 1)$.

a Explain why f(x) and g(x) are even functions.

b Graph y = f(x) and y = g(x) on the domain $0 \le x \le 5$. Find the points of intersection of the graphs on this domain.

• Hence solve $x^6 - e^{x^2} + \ln(x^2 + 1) > 0$ for all $x \in \mathbb{R}$.

11 For the function $g: x \mapsto \log_3(x+2) - 2$:

a Find the domain and range.

b Find any asymptotes and axes intercepts for the graph of the function.

 \bullet Find the defining equation for g^{-1} . Explain how to verify your answer.

d Sketch the graphs of g, g^{-1} , and y = x on the same axes.

12 The weight of a radioactive isotope remaining after t weeks is given by

 $W_t = 8000 \times e^{-\frac{\epsilon}{20}}$ grams. Find the time for the weight to:

b reach 1000 g

 \bullet reach 0.1% of its original value.

Section E, Part 1 (No Calculator)

1 If $f(x) = x^2 - 2x$, find in simplest form:

a f(3)

b f(2x)

f(-x)

2 If $f(x) = 5 - x - x^2$, find in simplest form:

a f(-1) **b** f(x-1)

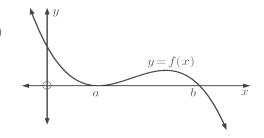
c $f\left(\frac{x}{2}\right)$ d 2f(x) - f(-x)

3 The graph of $f(x) = 3x^3 - 2x^2 + x + 2$ is translated to its image g(x) by the vector $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. Write the equation of g(x) in the form $g(x) = ax^3 + bx^2 + cx + d$.

The graph of y = f(x) is shown alongside. The x-axis is a tangent to f(x) at x = a and f(x)cuts the x-axis at x = b. On the same diagram, sketch the graph of

y = f(x - c) where 0 < c < b - a.

Indicate the x-intercepts of y = f(x - c).



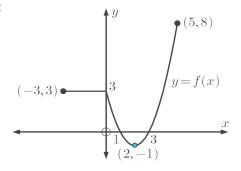
5 For the graph of y = f(x) given, sketch graphs of:

$$\mathbf{a} \quad y = f(-x)$$

b
$$y = -f(x)$$

$$y = f(x+2)$$

a
$$y=f(-x)$$
 b $y=-f(x)$ c $y=f(x+2)$ d $y=f(x)+2$



6 Consider the function $f: x \mapsto x^2$. On the same set of axes graph:

$$\mathbf{a} \quad y = f(x)$$

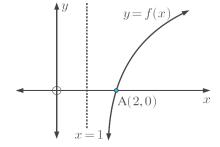
b
$$y = f(x - 1)$$

$$y = 3f(x-1)$$

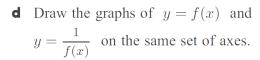
b
$$y = f(x-1)$$
 c $y = 3f(x-1)$ **d** $y = 3f(x-1) + 2$

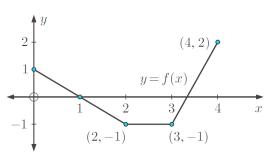
7 The graph of y = f(x) is shown alongside.

- **a** Sketch the graph of y = g(x) where g(x) = f(x+3) - 1.
- **b** State the equation of the vertical asymptote of y = g(x).
- Identify the point A' on the graph of y = g(x)which corresponds to point A.

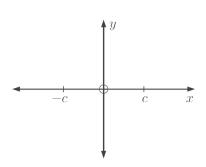


- **8** The graph of y = f(x) is drawn alongside.
 - **a** Draw the graphs of y = f(x) and y = |f(x)| on the same set of axes.
 - **b** Find the y-intercept of $\frac{1}{f(x)}$.
 - Show on the diagram the points that are invariant for the function $\frac{1}{f(x)}$.





- **9** Let $f(x) = \frac{c}{x+c}$, $x \neq -c$, c > 0.
 - a On a set of axes like those shown, sketch the graph of y = f(x). Label clearly any points of intersection with the axes and any asymptotes.
 - **b** On the same set of axes, sketch the graph of $y = \frac{1}{f(x)}$. Label clearly any points of intersection with the axes.



Section E, Part 2 (Calculator)

- 1 Use your calculator to help graph $f(x) = (x+1)^2 4$. Include all axes intercepts, and the coordinates of the turning point of the function.
- **2** Consider the function $f: x \mapsto x^2$. On the same set of axes graph:

- **b** y = f(x+2) **c** y = 2f(x+2) **d** y = 2f(x+2) 3
- **3** Consider $f: x \mapsto \frac{2^x}{x}$.
 - **a** Does the function have any axes intercepts?
 - **b** Find the equations of the asymptotes of the function.
 - Find any turning points of the function.
 - **d** Sketch the function for $-4 \le x \le 4$.
- **4** Consider $f(x) = 2^{-x}$.
 - **a** Use your calculator to help determine whether the following are true or false:
 - i As $x \to \infty$, $2^{-x} \to 0$.
- ii As $x \to -\infty$, $2^{-x} \to 0$.

iii The y-intercept is $\frac{1}{2}$.

- iv $2^{-x} > 0$ for all x.
- **b** On the same set of axes, graph y = f(x) and y = |f(x)|.
- Write down the equation of any asymptoes of y = |f(x)|.
- The graph of the function $f(x) = (x+1)^2 + 4$ is translated 2 units to the right and 4 units
 - **a** Find the function g(x) corresponding to the translated graph.
 - **b** State the range of f(x).
 - lacktriangle State the range of g(x).
- **6** For each of the following functions:
 - i Find y = f(x), the result when the function is translated by $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.
 - ii Sketch the original function and its translated function on the same set of axes. Clearly state any asymptotes of each function.
 - **iii** State the domain and range of each function.
 - **a** $y = \frac{1}{-}$

- **b** $y = 2^x$
- **7** Sketch the graph of $f(x) = x^2 + 1$, and on the same set of axes sketch the graphs of:
 - -f(x)

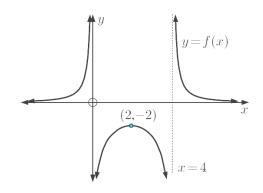
b f(2x)

- f(x) + 3
- **8** Suppose f(x) = x + 2. The function F is obtained by stretching the function f vertically with scale factor 2, then stretching it horizontally with scale factor $\frac{1}{2}$, then translating it $\frac{1}{2}$ horizontally and -3 vertically.
 - **a** Find the function F(x).
 - **b** What can be said about the point (1, 3) under this transformation?
 - What happens to the points (0, 2) and (-1, 1) under this transformation?
 - **d** Show that the points in **c** also lie on the graph of y = F(x).

The graph of y = f(x) is given. On the same set of axes graph each pair of functions:

b
$$y = f(x)$$
 and $y = \frac{1}{f(x)}$

$$y = f(x)$$
 and $y = |f(x)|$



10 Consider the function $f(x) = \frac{2x-3}{3x+5}$.

- **a** Find the asymptotes of y = f(x).
- **b** Discuss the behaviour of the graph near these asymptotes.
- \bullet Find the axes intercepts of y = f(x).
- **d** Sketch the graph of y = f(x).
- Describe the transformations which transform $y = \frac{1}{x}$ into y = f(x).
- **f** Describe the transformations which transform y = f(x) into $y = \frac{1}{x}$.

a Sketch the graph of f(x) = -2x + 3, clearly showing the axes intercepts. 11

b Find the invariant points for the graph of $y = \frac{1}{f(x)}$

• State the equation of the vertical asymptote of $y = \frac{1}{f(x)}$ and find its y-intercept.

d Sketch the graph of $y = \frac{1}{f(x)}$ on the same axes as in part **a**, showing clearly the information you have found.

• On a new pair of axes, sketch the graphs of y = |f(x)| and y = f(|x|) showing clearly all important features.

Section E, Part 3 (Calculator)

1 If $f(x) = \frac{4}{x}$, find in simplest form:

a
$$f(-4)$$
 b $f(2x)$

b
$$f(2x)$$

c
$$f\left(\frac{x}{2}\right)$$

d
$$4f(x+2)-3$$

2 Consider the graph of y = f(x) shown.

a Use the graph to determine:

i the coordinates of the turning point

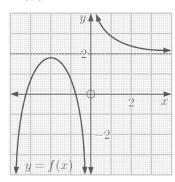
ii the equation of the vertical asymptote

iii the equation of the horizontal asymptote

iv the x-intercepts.

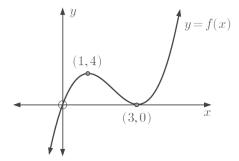
b Graph the function $g: x \mapsto x+1$ on the same set of axes.

• Hence estimate the coordinates of the points of intersection of y = f(x) and y = g(x).

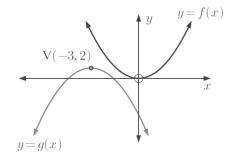


- **3** Sketch the graph of $f(x) = -x^2$, and on the same set of axes sketch the graph of:
 - **a** y = f(-x) **b** y = -f(x) **c** y = f(2x)
- **d** y = f(x-2)

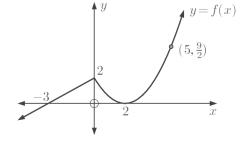
- **4** The graph of a cubic function y = f(x) is shown alongside.
 - **a** Sketch the graph of g(x) = -f(x-1).
 - **b** State the coordinates of the turning points of y = g(x).



5 The graph of $f(x) = x^2$ is transformed to the graph of g(x) by a reflection and a translation as illustrated. Find the formula for g(x) in the form $g(x) = ax^2 + bx + c.$



- **6** Given the graph of y = f(x), sketch graphs of:
 - a f(-x)
- **b** f(x+1)
- c f(x) 3



- **7** The graph of $f(x) = x^3 + 3x^2 x + 4$ is translated to its image y = g(x) by the vector $\binom{-1}{3}$. Write the equation of g(x) in the form $g(x) = ax^3 + bx^2 + cx + d$.
- **a** Find the equation of the line that results when the line f(x) = 3x + 2 is translated:
 - i 2 units to the left

- ii 6 units upwards.
- **b** Show that when the linear function f(x) = ax + b, a > 0 is translated k units to the left, the resulting line is the same as when f(x) is translated ka units upwards.
- **9** The function f(x) results from transforming the function $y = \frac{1}{x}$ by a reflection in the y-axis, then a vertical stretch with scale factor 3, then a translation of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
 - **a** Find an expression for f(x).
 - **b** Sketch y = f(x) and state its domain and range.
 - Does y = f(x) have an inverse function? Explain your answer.
 - **d** Is the function f a self-inverse function? Give graphical and algebraic evidence to support your answer.

10 Consider $y = \log_4 x$.

a Find the function which results from a translation of $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

b Sketch the original function and the translated function on the same set of axes.

• State the asymptotes of each function.

d State the domain and range of each function.

11 The function g(x) results when $y=\frac{1}{x}$ is transformed by a vertical stretch with scale factor $\frac{1}{3}$, followed by a reflection in the y-axis, followed by a translation of 2 units to the right.

a Write an expression for g(x) in the form $g(x) = \frac{ax+b}{cx+d}$

b Find the asymptotes of y = g(x).

 $oldsymbol{c}$ State the domain and range of q(x).

d Sketch y = g(x).

Section F, Part 1 (No Calculator)

1 Identify the following sequences as arithmetic, geometric, or neither:

a 7, -1, -9, -17, **b** 9, 9, 9, 9,

d 1, 1, 2, 3, 5, 8, **e** the set of all multiples of 4 in ascending order.

2 Find k if 3k, k-2, and k+7 are consecutive terms of an arithmetic sequence.

3 Show that 28, 23, 18, 13, is an arithmetic sequence. Hence find u_n and the sum S_n of the first n terms in simplest form.

4 Find k given that 4, k, and k^2-1 are consecutive terms of a geometric sequence.

5 Determine the general term of a geometric sequence given that its sixth term is $\frac{16}{3}$ and its tenth term is $\frac{256}{3}$.

6 Insert six numbers between 23 and 9 so that all eight numbers are in arithmetic sequence.

Find, in simplest form, a formula for the general term u_n of:

a 86, 83, 80, 77,

b $\frac{3}{4}$, 1, $\frac{7}{6}$, $\frac{9}{7}$,

c 100, 90, 81, 72.9,

Hint: One of these sequences is neither arithmetic nor geometric.

Expand and hence evaluate:

a $\sum_{k=1}^{7} k^2$ **b** $\sum_{k=1}^{4} \frac{k+3}{k+2}$

Find the sum of each of the following infinite geometric series:

a $18 - 12 + 8 - \dots$

b $8+4\sqrt{2}+4+...$

10 A ball bounces from a height of 3 metres and returns to 80% of its previous height on each bounce. Find the total distance travelled by the ball until it stops bouncing.

11 The sum of the first n terms of an infinite sequence is $\frac{3n^2+5n}{2}$ for all $n \in \mathbb{Z}^+$.

a Find the *n*th term.

b Prove that the sequence is arithmetic.

12 a, b, and c are consecutive terms of both an arithmetic and geometric sequence. What can be deduced about a, b, and c?

13 x, y, and z are consecutive terms of a geometric sequence.

If $x+y+z=\frac{7}{3}$ and $x^2+y^2+z^2=\frac{91}{9}$, find the values of x, y, and z.

14 2x and x-2 are the first two terms of a convergent series. The sum of the series is $\frac{18}{7}$. Find x, clearly explaining why there is only one possible value.

15 a, b, and c are consecutive terms of an arithmetic sequence. Prove that the following are also consecutive terms of an arithmetic sequence:

a
$$b+c$$
, $c+a$, and $a+b$

b
$$\frac{1}{\sqrt{b} + \sqrt{c}}$$
, $\frac{1}{\sqrt{c} + \sqrt{a}}$, and $\frac{1}{\sqrt{a} + \sqrt{b}}$

Section F, Part 2 (Calculator)

1 List the first four members of the sequences defined by:

a
$$u_n = 3^{n-2}$$

b
$$u_n = \frac{3n+2}{n+3}$$

b
$$u_n = \frac{3n+2}{n+3}$$
 c $u_n = 2^n - (-3)^n$

2 A sequence is defined by $u_n = 6(\frac{1}{2})^{n-1}$.

a Prove that the sequence is geometric.

b Find u_1 and r.

• Find the 16th term of the sequence to 3 significant figures.

3 Consider the sequence $24, 23\frac{1}{4}, 22\frac{1}{2}, \dots$

a Which term of the sequence is -36?

b Find the value of u_{35} .

 \bullet Find S_{40} , the sum of the first 40 terms of the sequence.

4 Find the sum of:

a the first 23 terms of 3 + 9 + 15 + 21 + ...

b the first 12 terms of 24 + 12 + 6 + 3 + ...

5 Find the first term of the sequence 5, 10, 20, 40, which exceeds 10 000.

6 What will an investment of €6000 at 7% p.a. compound interest amount to after 5 years if the interest is compounded:

a annually

b quarterly

7 The *n*th term of a sequence is given by the formula $u_n = 5n - 8$.

a Find the value of u_{10} .

b Write down an expression for $u_{n+1} - u_n$ and simplify it.

• Hence explain why the sequence is arithmetic.

d Evaluate $u_{15} + u_{16} + u_{17} + \dots + u_{30}$.

8 A geometric sequence has $u_6 = 24$ and $u_{11} = 768$. Determine the general term of the sequence and hence find:

b the sum of the first 15 terms.

9 Find the first term of the sequence $24, 8, \frac{8}{3}, \frac{8}{9}, \dots$ which is less than 0.001.

10 **a** Determine the number of terms in the sequence 128, 64, 32, 16, ..., $\frac{1}{512}$.

b Find the sum of these terms.

11 Find the sum of each of the following infinite geometric series:

a
$$1.21 - 1.1 + 1 - \dots$$

b
$$\frac{14}{3} + \frac{4}{3} + \frac{8}{21} + \dots$$

12 How much should be invested at a fixed rate of 9% p.a. compound interest if you need it to amount to \$20 000 after 4 years with interest paid monthly?

13 In 2004 there were 3000 iguanas on a Galapagos island. Since then, the population of iguanas on the island has increased by 5% each year.

a How many iguanas were on the island in 2007?

b In what year will the population first exceed 10 000?

Section F, Part 3 (Calculator)

1 A sequence is defined by $u_n = 68 - 5n$.

a Prove that the sequence is arithmetic. **b** Find u_1 and d.

• Find the 37th term of the sequence.

d State the first term of the sequence which is less than -200.

a Show that the sequence 3, 12, 48, 192, is geometric.

b Find u_n and hence find u_9 .

3 Find the general term of the arithmetic sequence with $u_7 = 31$ and $u_{15} = -17$. Hence, find the value of u_{34} .

4 Write using sigma notation:

a $4 + 11 + 18 + 25 + \dots$ for n terms **b** $\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots$ for n terms.

5 Evaluate:

a $\sum_{k=1}^{8} \left(\frac{31-3k}{2} \right)$ **b** $\sum_{k=1}^{15} 50(0.8)^{k-1}$ **c** $\sum_{k=7}^{\infty} 5\left(\frac{2}{5} \right)^{k-1}$

6 How many terms of the series $11 + 16 + 21 + 26 + \dots$ are needed to exceed a sum of 450?

7 £12500 is invested in an account which pays 8.25\% p.a. compounded. Find the value of the investment after 5 years if the interest is compounded:

a half-yearly

b monthly.

8 The sum of the first two terms of an infinite geometric series is 90. The third term is 24.

a Show that there are two possible series. Find the first term and common ratio in each case.

Show that both series converge and find their respective sums.

9 Seve is training for a long distance walk. He walks 10 km in the first week, then each week thereafter he walks an additional 500 m. If he continues this pattern for a year, how far does Seve walk:

a in the last week

b in total?

a Under what conditions will the series $\sum_{k=1}^{\infty} 50(2x-1)^{k-1}$ converge? 10 Explain your answer.

b Find $\sum_{k=1}^{\infty} 50(2x-1)^{k-1}$ if x = 0.3.

11 a, b, c, d, and e are consecutive terms of an arithmetic sequence. Prove that a+e=b+d=2c.

12 Suppose n consecutive geometric terms are inserted between 1 and 2. Write the sum of these n terms, in terms of n.

13 An arithmetic sequence, and a geometric sequence with common ratio r, have the same first two terms. Show that the third term of the geometric sequence is $\frac{r^2}{2r-1}$ times the third term of the arithmetic sequence.

14 $11 - 2 = 9 = 3^2$ and $1111 - 22 = 1089 = 33^2$. (111111....1) - (22222....2) is a perfect square. Show that

Section G, Part 1 (No Calculator)

1 Convert these to radians in terms of π :

- a 120°
- **b** 225°
- c 150°
- d 540°

2 Find the acute angles that would have the same:

- a sine as $\frac{2\pi}{3}$
- **b** sine as 165°
- c cosine as 276° .

3 Find:

- a $\sin 159^{\circ}$ if $\sin 21^{\circ} \approx 0.358$
- **b** $\cos 92^{\circ}$ if $\cos 88^{\circ} \approx 0.035$
- $\cos 75^{\circ}$ if $\cos 105^{\circ} \approx -0.259$
- **d** $\sin(-133^{\circ})$ if $\sin 47^{\circ} \approx 0.731$.

4 Use a unit circle diagram to find:

a $\cos 360^{\circ}$ and $\sin 360^{\circ}$

b $\cos(-\pi)$ and $\sin(-\pi)$.

5 Explain how to use the unit circle to find θ when $\cos \theta = -\sin \theta$, $0 \le \theta \le 2\pi$.

6 Find exact values for $\sin \theta$, $\cos \theta$, and $\tan \theta$ for θ equal to:

7 If $\sin x = -\frac{1}{4}$ and $\pi < x < \frac{3\pi}{2}$, find $\tan x$ exactly.

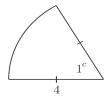
8 If $\cos \theta = \frac{3}{4}$ find the possible values of $\sin \theta$.

9 Evaluate:

- **a** $2\sin(\frac{\pi}{3})\cos(\frac{\pi}{3})$ **b** $\tan^2(\frac{\pi}{4}) 1$ **c** $\cos^2(\frac{\pi}{6}) \sin^2(\frac{\pi}{6})$

10 Given $\tan x = -\frac{3}{2}$ and $\frac{3\pi}{2} < x < 2\pi$, find: **a** $\sin x$ **b** $\cos x$.

11



Find the perimeter and area of the sector.

12 Suppose $\cos \theta = \frac{\sqrt{11}}{\sqrt{17}}$ and θ is acute. Find the exact value of $\tan \theta$.

13 Simplify:

- **a** $\cos\left(\frac{\pi}{2} \theta\right) \sin\theta$ **b** $\cos(-\theta)\tan\theta$

Section G, Part 2 (Calculator)

1 Determine the coordinates of the point on the unit circle corresponding to an angle of:

- a 320°
- **b** 163°

2 Convert to radians to 4 significant figures:

- a 71°
- **b** 124.6°
- -142°

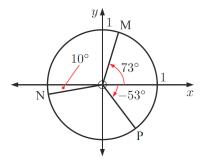
3 Convert these radian measurements to degrees, to 2 decimal places:

a :

- **b** 1.46
- c 0.435
- **d** -5.271

4 Determine the area of a sector of angle $\frac{5\pi}{12}$ and radius 13 cm.

5 Find the coordinates of the points M, N, and P on the unit circle.



6 Find the angle [OA] makes with the positive x-axis if the x-coordinate of the point A on the unit circle is -0.222.

7 Find all angles between 0° and 360° which have:

- a a cosine of $-\frac{\sqrt{3}}{2}$
- **b** a sine of $\frac{1}{\sqrt{2}}$
- a tangent of $-\sqrt{3}$

8 Find θ for $0 \leqslant \theta \leqslant 2\pi$ if:

- a $\cos \theta = -1$
- **b** $\sin^2 \theta = \frac{3}{4}$

9 Find the obtuse angles which have the same:

- a sine as 47°
- **b** sine as $\frac{\pi}{15}$
- c cosine as 186°

10 Find the perimeter and area of a sector of radius 11 cm and angle 63°.

11 Find the radius and area of a sector of perimeter 36 cm with an angle of $\frac{2\pi}{3}$.

12 Find two angles on the unit circle with $0 \le \theta \le 2\pi$, such that:

- a $\cos \theta = \frac{2}{3}$
- **b** $\sin \theta = -\frac{1}{4}$
- $\tan \theta = 3$

Section G, Part 3 (Calculator)

1 Convert these radian measurements to degrees:

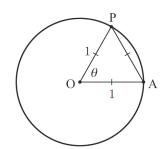
- a $\frac{2\pi}{5}$
- **b** $\frac{5\pi}{4}$
- c $\frac{7\pi}{9}$
- d $\frac{11\pi}{6}$

2 Illustrate the regions where $\sin \theta$ and $\cos \theta$ have the same sign.

- **3** Use a unit circle diagram to find:
 - **a** $\cos(\frac{3\pi}{2})$ and $\sin(\frac{3\pi}{2})$

- **b** $\cos(-\frac{\pi}{2})$ and $\sin(-\frac{\pi}{2})$
- **4** Suppose $m = \sin p$, where p is acute. Write an expression in terms of m for:
 - a $\sin(\pi-p)$
- **b** $\sin(p + 2\pi)$
- $\cos p$
- **d** $\tan p$

5

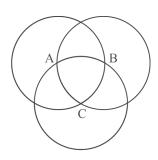


- **a** State the value of θ in:
 - i degrees
- ii radians.
- State the arc length AP.
- State the area of the minor sector OAP.
- Without a calculator, evaluate $\tan^2(\frac{2\pi}{3})$.
- Show that $\cos(\frac{3\pi}{4}) \sin(\frac{3\pi}{4}) = -\sqrt{2}$.
- **8** If $\cos\theta = -\frac{3}{4}$, $\frac{\pi}{2} < \theta < \pi$ find the exact value of:
 - a $\sin \theta$

 $\tan \theta$

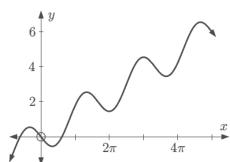
 $\sin(\theta + \pi)$

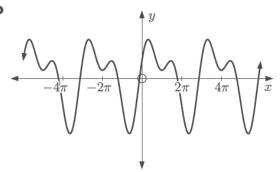
- **9** Without using a calculator, evaluate:
- **a** $\tan^2 60^\circ \sin^2 45^\circ$ **b** $\cos^2(\frac{\pi}{4}) + \sin(\frac{\pi}{2})$ **c** $\cos(\frac{5\pi}{3}) \tan(\frac{5\pi}{4})$
- **10** Simplify:
 - a $\sin(\pi \theta) \sin \theta$
- **b** $\sin\left(\frac{\pi}{2}-\theta\right)-2\cos\theta$
- 11 Use a unit circle diagram to show that $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$ for $\frac{\pi}{2} < \theta < \pi$.
- 12 Three circles with radius r are drawn as shown, each with its centre on the circumference of the other two circles. A, B and C are the centres of the three circles. Prove that an expression for the area of the shaded region is $A = \frac{r^2}{2}(\pi - \sqrt{3}).$



Section H, Part 1 (No Calculator)

1 Which of the following graphs display periodic behaviour?



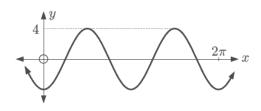


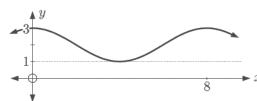
- **2** Draw the graph of $y = 4 \sin x$ for $0 \le x \le 2\pi$.
- 3 State the minimum and maximum values of:
 - **a** $1 + \sin x$
- **b** $-2\cos 3x$
- **4** State the period of:
- **a** $y = 4\sin(\frac{x}{5})$ **b** $y = -2\cos(4x)$ **c** $y = 4\cos(\frac{x}{2}) + 4$ **d** $y = \frac{1}{2}\tan(3x)$

5 Complete the table:

Function	Period	Amplitude	Domain	Range
$y = -3\sin(\frac{x}{4}) + 1$				
$y = \tan 2x$				
$y = 3\cos\pi x$				

6 Find the cosine function represented in each of the following graphs:





- **7** State the transformations which map:
 - **a** $y = \sin x$ onto $y = 3\sin(2x)$
- **b** $y = \cos x$ onto $y = \cos\left(x \frac{\pi}{3}\right) 1$
- 8 Find the remaining five trigonometric ratios from sin, cos, tan, csc, sec, and cot, if:
 - **a** $\cos x = \frac{1}{3}$ and $0 < x < \pi$
- **b** $\tan x = \frac{4}{5}$ and $\pi < x < 2\pi$.

- **9** Simplify:
 - **a** $\arctan(\tan(-0.5))$ **b** $\arcsin(\sin(-\frac{\pi}{6}))$ **c** $\arccos(\cos 2\pi)$

Section H, Part 2 (Calculator)

1 For each set of data below, draw a scatter diagram and state if the data exhibits approximately periodic behaviour.

a	x	0	1	2	3	4	5	6	7	8	9	10	11	12
	y	2.7	0.8	-1.7	-3	-2.1	0.3	2.5	2.9	1.3	-1.3	-2.9	-2.5	-0.3

b	x	0	1	2	3	4	5	6	7	8	9
	y	5	3.5	6	-1.5	4	-2.5	-0.8	0.9	2.6	4.3

2 Draw the graph of $y = \sin 3x$ for $0 \le x \le 2\pi$.

3 State the period of: **a** $y = 4\sin(\frac{x}{3})$ **b** $y = -2\tan 4x$

4 Draw the graph of $y = 0.6\cos(2.3x)$ for $0 \le x \le 5$.

5 A robot on Mars records the temperature every Mars day. A summary series, showing every one hundredth Mars day, is shown in the table below.

Number of Mars days	()	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300
Temp. (°C)	-43	-15	-5	-21	-59	-79	-68	-50	-27	-8	-15	-70	-78	-68

a Find the maximum and minimum temperatures recorded by the robot.

b Find a sine model for the temperature T in terms of the number of Mars days n.

• Use this information to estimate the length of a Mars year.

6 State the minimum and maximum values of:

$$\mathbf{a} \quad y = 5\sin x - 3$$

b
$$y = \frac{1}{3}\cos x + 1$$

7 State the transformations which map:

a
$$y = \tan x$$
 onto $y = -\tan(2x)$

a
$$y = \tan x$$
 onto $y = -\tan(2x)$ **b** $y = \sin x$ onto $y = 2\sin\left(\frac{x}{2} - \frac{\pi}{4}\right) + \frac{1}{2}$

a Sketch the graphs of $y = \sec x$ and $y = \csc x$ on the same set of axes for 8 $-2\pi \leqslant x \leqslant 2\pi$.

b State a transformation which maps $y = \sec x$ onto $y = \csc x$ for all $x \in \mathbb{R}$.

a Sketch the graphs of $y = \arcsin x$ and $y = \arccos x$ on the same set of axes.

b State the domain and range of each function.

• State the transformations which map $y = \arcsin x$ onto $y = \arccos x$.

Section H, Part 3 (Calculator)

1 Find b given that the function $y = \sin bx$, b > 0 has period:

a 6π

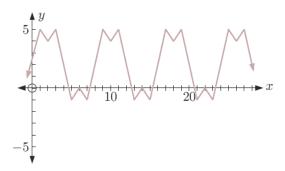
b $\frac{\pi}{12}$

a Without using technology, draw the graph of $f(x) = \sin(x - \frac{\pi}{3}) + 2$ for $0 \le x \le 2\pi$.

b For what values of k will f(x) = k have solutions?

3 Consider the graph alongside.

- a Explain why this graph shows periodic
- State:
 - i the period
 - ii the maximum value
 - iii the minimum value



4 On the same set of axes, for the domain $0 \le x \le 2\pi$, sketch:

a
$$y = \cos x$$
 and $y = \cos x - 3$

b
$$y = \cos x$$
 and $y = \cos(x - \frac{\pi}{4})$

$$y = \cos x \text{ and } y = 3\cos 2x$$

d
$$y = \cos x$$
 and $y = 2\cos(x - \frac{\pi}{3}) + 3$

5 The table below gives the mean monthly maximum temperature for Perth Airport in Western Australia.

	Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
7	<i>Temp.</i> (°C)	31.5	31.8	29.5	25.4	21.5	18.8	17.7	18.3	20.1	22.4	25.5	28.8

a A sine function of the form $T \approx a \sin(b(t-c)) + d$ is used to model the data. Find good estimates of the constants a, b, c, and d without using technology. Use Jan $\equiv 1$, Feb $\equiv 2$, and so on.

b Check your answer to **a** using technology. How well does your model fit?

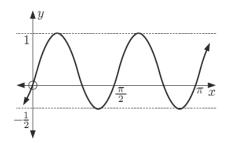
6 State the transformations which map:

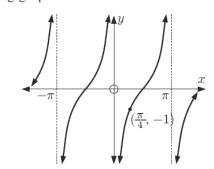
a
$$y = \cos x$$
 onto $y = \cos(x - \frac{\pi}{3}) + 1$ **b** $y = \tan x$ onto $y = -2\tan x$

b
$$y = \tan x$$
 onto $y = -2 \tan x$

$$y = \sin x$$
 onto $y = \sin(3x)$

7 Find the function represented in each of the following graphs:





Simplify:

- a $\csc x \tan x$

 $\sec x - \tan x \sin x$

a For what restricted domain of $y = \tan x$, is $y = \arctan x$ the inverse function?

b Sketch $y = \tan x$ for this domain, and $y = \arctan x$, on the same set of axes.

Section I, Part 1 (No Calculator)

 $y = \cos x$ 0.5 300° 500° 700° 200° 400° 600 -0.5-1

Use the graph of $y = \cos x$ to find the solutions of:

a
$$\cos x = -0.4$$
, $0 \le x \le 800^{\circ}$

b
$$\cos x = 0.9, \quad 0 \le x \le 600^{\circ}$$

2 Solve in terms of π :

a
$$2\sin x = -1$$
 for $0 \leqslant x \leqslant 4\pi$

a
$$2\sin x = -1$$
 for $0 \leqslant x \leqslant 4\pi$ **b** $\sqrt{2}\sin x - 1 = 0$ for $-2\pi \leqslant x \leqslant 2\pi$

3 Find the x-intercepts of:

a
$$y=2\sin 3x+\sqrt{3}$$
 for $0\leqslant x\leqslant 2\pi$

a
$$y=2\sin 3x+\sqrt{3}$$
 for $0\leqslant x\leqslant 2\pi$ **b** $y=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)$ for $0\leqslant x\leqslant 3\pi$

4 Solve algebraically in terms of π :

a
$$\cot x = \sqrt{3}$$
 for $x \in [0, 2\pi]$

b
$$\sec^2 x = \tan x + 1$$
 for $x \in [0, 2\pi]$

5 Simplify:
$$\mathbf{a} \cos\left(\frac{3\pi}{2} - \theta\right)$$
 $\mathbf{b} \sin\left(\theta + \frac{\pi}{2}\right)$

b
$$\sin\left(\theta + \frac{\pi}{2}\right)$$

6 Simplify: **a**
$$\frac{1-\cos^2\theta}{1+\cos\theta}$$
 b $\frac{\sin\alpha-\cos\alpha}{\sin^2\alpha-\cos^2\alpha}$ **c** $\frac{4\sin^2\alpha-4}{8\cos\alpha}$

$$\mathbf{b} \quad \frac{\sin \alpha - \cos \alpha}{\sin^2 \alpha - \cos^2 \alpha}$$

$$\frac{4\sin^2\alpha - 4}{8\cos\alpha}$$

7 If $\sin \alpha = -\frac{3}{4}$, $\pi \leqslant \alpha \leqslant \frac{3\pi}{2}$, find the exact value of:

- a $\cos \alpha$
- **b** $\sin 2\alpha$
- $\cos 2\alpha$

d $\tan 2\alpha$

Show that $\frac{\sin 2\alpha - \sin \alpha}{\cos 2\alpha - \cos \alpha + 1}$ simplifies to $\tan \alpha$.

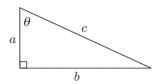
- Find the exact value of:
- a $\cos(165^{\circ})$
- **b** $\tan(\frac{\pi}{12})$

10 Solve for
$$x$$
 in $[0, 2\pi]$: **a** $2\cos 2x + 1 = 0$ **b** $\sin 2x = -\sqrt{3}\cos 2x$

a
$$2\cos 2x \pm 1 = 0$$

b
$$\sin 2x = -\sqrt{3}\cos 2x$$

11



Prove that:
$$\mathbf{a} \sin 2\theta = \frac{2ab}{c^2}$$

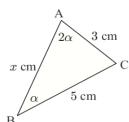
$$\mathbf{b} \quad \cos 2\theta = \frac{a^2 - b^2}{c^2}$$

12 Find the exact solutions of:

a
$$\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)-1=0$$
, $x\in[0,4\pi]$ **b** $\tan 2x-\sqrt{3}=0$, $x\in[0,2\pi]$

b
$$\tan 2x - \sqrt{3} = 0$$
, $x \in [0, 2\pi]$

13



a Show that $\cos \alpha = \frac{5}{6}$.

b Show that x is a solution of $3x^2 - 25x + 48 = 0$.

• Find x by solving the equation in **b**.

Section I, Part 2 (Calculator)

Solve for $0 \leqslant x \leqslant 8$: **a** $\sin x = 0.382$

b $\tan(\frac{x}{2}) = -0.458$

2 Solve:

a $\cos x = 0.4379$ for $0 \leqslant x \leqslant 10$ **b** $\cos(x - 2.4) = -0.6014$ for $0 \leqslant x \leqslant 6$

3 If $\sin A = \frac{5}{13}$ and $\cos A = \frac{12}{13}$, find: **a** $\sin 2A$ **b** $\cos 2A$

a Solve for $0 \leqslant x \leqslant 10$:

 $\tan x = 4$

ii $\tan(\frac{x}{4}) = 4$

iii $\tan(x - 1.5) = 4$

b Find exact solutions for x given $-\pi \leqslant x \leqslant \pi$:

i $\tan(x + \frac{\pi}{6}) = -\sqrt{3}$ ii $\tan 2x = -\sqrt{3}$

• Solve $3\tan(x-1.2) = -2$ for $0 \le x \le 10$.

5 Show that:

a $\sqrt{2}\cos\left(\theta+\frac{\pi}{4}\right)=\cos\theta-\sin\theta$

b $\cos \alpha \cos(\beta - \alpha) - \sin \alpha \sin(\beta - \alpha) = \cos \beta$

6 If $\cos x = -\frac{3}{4}$ and $\pi < x < \frac{3\pi}{2}$ find the exact value of $\sin\left(\frac{x}{2}\right)$.

7 Solve for $0 \le x \le 2\pi$:

a $\cos x = 0.3$

b $2\sin(3x) = \sqrt{2}$

 $43 + 8\sin x = 50.1$

8 An ecologist studying a species of water beetle estimates the population of a colony over an eight week period. If t is the number of weeks after the initial estimate is made, then the population in thousands can be modelled by $P(t) = 5 + 2\sin(\frac{\pi t}{3})$ where $0 \le t \le 8$.

a What was the initial population?

b What were the smallest and largest populations?

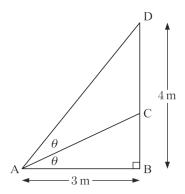
• During what time interval(s) did the population exceed 6000?

Solve for *x*: $3\cos x + \sin 2x = 1$ for $0 \le x \le 10$.

Write $3\sin x + 4\cos x$ in the form $k\cos(x+b)$, where k>0 and $0< b<2\pi$.

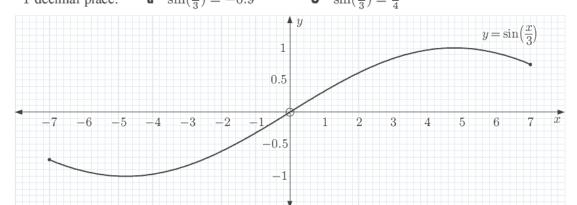
11 From ground level, a shooter is aiming at targets on a vertical brick wall. At the current angle of elevation of his rifle, he will hit a target 20 m above ground level. If he doubles the angle of elevation of the rifle, he will hit a target 45 m above ground level. How far is the shooter from the wall?

12 Find exactly the length of BC:



Section I, Part 3 (Calculator)

1 Consider $y = \sin(\frac{x}{3})$ on the domain $-7 \le x \le 7$. Use the graph to solve, correct to $\sin(\frac{x}{3}) = -0.9$ **b** $\sin(\frac{x}{3}) = \frac{1}{4}$



2 Solve algebraically for $0 \le x \le 2\pi$, giving answers in terms of π :

a
$$\sin^2 x - \sin x - 2 = 0$$

b
$$4\sin^2 x = 1$$

3 Find the exact solutions of:

a
$$\tan(x-\frac{\pi}{3})=\frac{1}{\sqrt{3}}, \ 0\leqslant x\leqslant 4\pi$$
 b $\cos(x+\frac{2\pi}{3})=\frac{1}{2}, \ -2\pi\leqslant x\leqslant 2\pi$

b
$$\cos(x + \frac{2\pi}{3}) = \frac{1}{2}, -2\pi \le x \le 2\pi$$

4 Simplify:

a
$$\cos^3 \theta + \sin^2 \theta \cos \theta$$
 b $\frac{\cos^2 \theta - 1}{\sin \theta}$

b
$$\frac{\cos^2\theta - 1}{\sin\theta}$$

$$5-5\sin^2\theta$$

$$\mathbf{d} \quad \frac{\sin^2 \theta - 1}{\cos \theta}$$

d
$$\frac{\sin^2 \theta - 1}{\cos \theta}$$
 e $\frac{\tan \theta + \cot \theta}{\sec \theta}$

f
$$\cos^2\theta(\tan\theta+1)^2-1$$

5 If $\tan 2\alpha = \frac{4}{3}$ for $\alpha \in (0, \frac{\pi}{2})$, find the exact value of $\sin \alpha$ without using a calculator.

6 Simplify:

a
$$(2\sin\alpha-1)^2$$

b
$$(\cos \alpha - \sin \alpha)^2$$

7 Show that:

$$\mathbf{a} \quad \frac{\cos \theta}{1 + \sin \theta} + \frac{1 + \sin \theta}{\cos \theta} = 2 \sec \theta$$

$$\mathbf{b} \quad \left(1 + \frac{1}{\cos \theta}\right) \left(\cos \theta - \cos^2 \theta\right) = \sin^2 \theta$$

8 Solve exactly: **a** $\arcsin x = \frac{\pi}{3}$

a
$$\arcsin x = \frac{\pi}{3}$$

b
$$\arctan(x-2) = \frac{\pi}{6}$$

- Show that $\sin\left(\frac{\pi}{8}\right) = \frac{1}{2}\sqrt{2-\sqrt{2}}$ using a suitable double angle formula.
- If α and β are the other angles of a right angled triangle, show that $\sin 2\alpha = \sin 2\beta$.

Prove that:

$$a (\sin \theta + \cos \theta)^2 = 1 + \sin 2\theta$$

$$\mathbf{b} \quad \csc 2x + \cot 2x = \cot x$$

Use the principle of mathematical induction to prove that:

$$\sin^2\theta + \sin^22\theta + \sin^23\theta + \dots + \sin^2(n\theta) = \frac{1}{2} \left[n - \frac{\cos[(n+1)\theta]\sin n\theta}{\sin\theta} \right] \quad \text{for all} \quad n \in \mathbb{Z}^+.$$

- **a** Show that $\cos(\alpha \beta) \cos(\alpha + \beta) = 2\sin\alpha\sin\beta$.
 - **b** Hence show that $\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha \beta) \cos(\alpha + \beta))$.
 - Hence show that $\sin[(k+1)\theta]\sin\frac{\theta}{2} + \sin\frac{k\theta}{2}\sin\frac{(k+1)\theta}{2} = \sin\frac{(k+1)\theta}{2}\sin\frac{(k+2)\theta}{2}$.
 - d Use the principle of mathematical induction to prove that

$$\sin\theta + \sin 2\theta + \sin 3\theta + \dots + \sin(n\theta) = \frac{\sin\left[\frac{1}{2}(n+1)\theta\right]\sin\left(\frac{1}{2}n\theta\right)}{\sin\left(\frac{1}{2}\theta\right)} \quad \text{for all} \quad n \in \mathbb{Z}^+.$$

Section J, Part 1 (No Calculator)

1 If
$$f(x) = 7 + x - 3x^2$$
, find:

a
$$f(3)$$

b
$$f'(3)$$

c
$$f''(3)$$
.

2 Find
$$\frac{dy}{dx}$$
 for:

a
$$y = 3x^2 - x^4$$

b
$$y = \frac{x^3 - x}{x^2}$$

3 At what point on the curve
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
 does the tangent have gradient 1?

4 Find
$$\frac{dy}{dx}$$
 if:

a
$$y = e^{x^3+2}$$

b
$$y = \ln\left(\frac{x+3}{x^2}\right)$$

$$\bullet \quad \ln(2y+1) = xe^y$$

5 Given
$$y = 3e^x - e^{-x}$$
, show that $\frac{d^2y}{dx^2} = y$.

6 Differentiate with respect to x:

a
$$\sin(5x)\ln(x)$$

b
$$\sin(x)\cos(2x)$$

$$e^{-2x} \tan x$$

7 Find the gradient of the tangent to $y = \sin^2 x$ at the point where $x = \frac{\pi}{3}$.

8 Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ given $x^2 + 2xy + y^2 = 4$.

9 Determine the derivative with respect to t of:

a
$$M = (t^2 + 3)^4$$

$$\mathbf{b} \quad A = \frac{\sqrt{t+5}}{t^2}$$

10 Use the rules of differentiation to find $\frac{dy}{dx}$ for:

a
$$y = \frac{4}{\sqrt{x}} - 3x$$

b
$$y = \sqrt{x^2 - 3x}$$

11 Find f''(2) for:

a
$$f(x) = 3x^2 - \frac{1}{x}$$
 b $f(x) = \sqrt{x}$

b
$$f(x) = \sqrt{x}$$

12 Given
$$y = (1 - \frac{1}{3}x)^3$$
, show that $\frac{d^3y}{dx^3} = -\frac{2}{9}$.

13 For
$$y=\frac{1}{2x+1}$$
, prove that $\frac{d^ny}{dx^n}=\frac{(-2)^nn!}{(2x+1)^{n+1}}$ for all $n\in\mathbb{Z}^+$.

Section J, Part 2 (Calculator)

1 Differentiate with respect to x:

- **a** $5x 3x^{-1}$
- **b** $(3x^2+x)^4$ **c** $(x^2+1)(1-x^2)^3$

2 Find all points on the curve $y = 2x^3 + 3x^2 - 10x + 3$ where the gradient of the tangent is 2.

- **3** If $y = \sqrt{5-4x}$, find:

 $\mathbf{b} \quad \frac{d^2y}{dx^2}$

 $\frac{d^3y}{dx^3}$

4 Consider the curves $y = e^{x-1} + 1$ and $y = 3 - e^{1-x}$.

- **a** Sketch the curves on the same set of axes.
 - **b** Find the point of intersection of the two curves.
 - Show that the tangents to each curve at this point have the same gradient.
 - **d** Comment on the significance of this result.
- **5** Find $\frac{dy}{dx}$ if:
- **a** $y = \ln(x^3 3x)$ **b** $y = \frac{e^x}{r^2}$ **c** $e^{x+y} = \ln(y^2 + 1)$

6 Find x if
$$f''(x) = 0$$
 and $f(x) = 2x^4 - 4x^3 - 9x^2 + 4x + 7$.

- **7** If $f(x) = x \cos x$, find:
 - a $f(\pi)$

- **b** $f'(\frac{\pi}{2})$
- $f''(\frac{3\pi}{4})$
- **8** Given that a and b are constants, differentiate $y = 3\sin bx a\cos 2x$ with respect to x. Find a and b if $y + \frac{d^2y}{dx^2} = 6\cos 2x$.
- Differentiate with respect to x:
 - a $10x \sin(10x)$
- **b** $\ln\left(\frac{1}{\cos x}\right)$
- $\sin(5x)\ln(2x)$

- **10** Differentiate with respect to x:
 - **a** $f(x) = \frac{(x+3)^3}{\sqrt{x}}$ **b** $f(x) = x^4 \sqrt{x^2 + 3}$
- **11** Find $\frac{dy}{dx}$ for:
 - $\mathbf{a} \quad y = \frac{x}{\sqrt{\sec x}}$
- **b** $y = e^x \cot(2x)$ **c** $y = \arccos\left(\frac{x}{2}\right)$
- **12** The curve $f(x) = 2x^3 + Ax + B$ has a tangent with gradient 10 at the point (-2, 33). Find the values of A and B.
- **13** Find $\frac{dy}{dx}$ given $x^2 3y^2 = 0$. Explain your answer.

Section J, Part 3 (Calculator)

1 Differentiate with respect to x:

$$y = x^3 \sqrt{1 - x^2}$$

b
$$y = \frac{x^2 - 3x}{\sqrt{x+1}}$$

2 Find $\frac{d^2y}{dx^2}$ for:

a
$$y = 3x^4 - \frac{2}{x}$$

b
$$y = x^3 - x + \frac{1}{\sqrt{x}}$$

3 Find all points on the curve $y = xe^x$ where the gradient of the tangent is 2e.

4 Differentiate with respect to x:

$$f(x) = \ln(e^x + 3)$$

a
$$f(x) = \ln(e^x + 3)$$
 b $f(x) = \ln\left[\frac{(x+2)^3}{x}\right]$ **c** $f(x) = x^{x^2}$

$$f(x) = x^{x^2}$$

5 Given $y = \left(x - \frac{1}{x}\right)^4$, find $\frac{dy}{dx}$ when x = 1.

a Find f'(x) and f''(x) for $f(x) = \sqrt{x}\cos(4x)$.

b Hence find $f'\left(\frac{\pi}{16}\right)$ and $f''\left(\frac{\pi}{8}\right)$.

7 Suppose $y = 3\sin 2x + 2\cos 2x$. Show that $4y + \frac{d^2y}{dx^2} = 0$.

8 Consider $f(x) = \frac{6x}{3+x^2}$. Find the value(s) of x when:

a
$$f(x) = -\frac{1}{2}$$

b
$$f'(x) = 0$$

$$f''(x) = 0$$

9 The function f is defined by $f: x \mapsto -10\sin 2x \cos 2x$, $0 \leqslant x \leqslant \pi$.

a Write down an expression for f(x) in the form $k \sin 4x$.

b Solve f'(x) = 0, giving exact answers.

10 Given the curve $e^x y - xy^2 = 1$, find:

a
$$\frac{dy}{dx}$$

b the gradient of the curve at x = 0.

11 Prove using the principle of mathematical induction that if $y = x^n$, $n \in \mathbb{Z}^+$, then $\frac{dy}{dx} = nx^{n-1}$. You may assume the product rule of differentiation.

Section K, Part 1 (No Calculator)

- **1** Find the equation of the tangent to $y = -2x^2$ at the point where x = -1.
- **2** Find the equation of the normal to $y = \frac{1-2x}{x^2}$ at the point where x = 1.
- **3** Consider the function $f(x) = \frac{3x-2}{x+3}$.
 - **a** State the equation of the vertical asymptote.
 - **b** Find the axes intercepts.
 - Find f'(x) and draw its sign diagram.
 - **d** Does the function have any stationary points?
- 4 Find the equation of the normal to $y = e^{-x^2}$ at the point where x = 1.
- **5** Show that the equation of the tangent to $y = x \tan x$ at $x = \frac{\pi}{4}$ is $(2 + \pi)x 2y = \frac{\pi^2}{4}$.
- **6** The tangent to $y = \frac{ax+b}{\sqrt{x}}$ at x = 1 is 2x y = 1. Find a and b.
- 7 Show that the equation of the tangent to $f(x) = 4\ln(2x)$ at the point $P(1, 4\ln 2)$ is given by $y = 4x + 4\ln 2 4$.
- **8** Consider the function $f(x) = \frac{e^x}{x-1}$.
 - **a** Find the y-intercept of the function.
 - **b** For what values of x is f(x) defined?
 - Find the signs of f'(x) and f''(x) and comment on the geometrical significance of each.
 - **d** Sketch the graph of y = f(x).
 - Find the equation of the tangent at the point where x = 2.
- **9** The line through A(2, 4) and B(0, 8) is a tangent to $y = \frac{a}{(x+2)^2}$. Find a.
- 10 Find the coordinates of P and Q if (PQ) is the tangent to $y = \frac{5}{\sqrt{x}}$ at (1, 5).

